Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
3.
J Virol ; 97(6): e0068923, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: covidwho-20245290

RESUMEN

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Asunto(s)
Infecciones por Coronavirus , Células Caliciformes , Receptores Notch , Enfermedades de los Porcinos , Animales , Coronavirus , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Células Caliciformes/citología , Transducción de Señal , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Células Madre/citología , Diferenciación Celular , Receptores Notch/metabolismo
4.
Viruses ; 15(5)2023 05 22.
Artículo en Inglés | MEDLINE | ID: covidwho-20245260

RESUMEN

Infectious bronchitis virus (IBV) belongs to the gamma-coronavirus genus of Coronaviridae and causes serious infectious diseases in the poultry industry. However, only a few IBV strains can infect avian passage cell lines, seriously hindering the progress of basic research on IBV pathogenesis. Whereas IBV field strains can replicate in tracheal ring organ culture (TOC) without any previous adaptation in chicken embryos or primary cells. In this study, to investigate the potential use of TOC as an in vitro infection model for the study of IBV-host interaction, we first established a chicken embryo TOC culture system and carried out an investigation on the IBV replication kinetics in the system. We found that the selected strains of the IBV GI-1, GI-7, GI-13, GI-19, and GI-22 genotypes could successfully replicate in TOC and bring about damage to the infected trachea. Next, we identified host proteins of the chicken embryo trachea that interact with the IBV S1 protein by immunoprecipitation and protein mass spectrometry. A total of 127 candidate proteins were initially identified with major involvement in cell adhesion pathways and apoptosis- and autophagy-related pathways. The heat shock protein 70 (HSP70) was selected for further investigation in the interaction with IBV viral proteins. Our results showed that HSP70 interacted with IBV S1 in both TOC and CEK cells, whereas HSP70 overexpression inhibited viral replication. This study indicates that TOC is a good system for the elucidation of IBV-host interactions and HSP70 is a potential host antiviral factor.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Embrión de Pollo , Virus de la Bronquitis Infecciosa/genética , Técnicas de Cultivo de Órganos , Tráquea , Pollos , Línea Celular , Infecciones por Coronavirus/veterinaria
5.
Poult Sci ; 102(6): 102661, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-20244886

RESUMEN

Avian infectious bronchitis (IB) is a highly contagious disease caused by infectious bronchitis virus (IBV). Vaccination is an effective approach for controlling IBV. Therefore, reliable immune monitoring for IB is critical for poultry. In this study, a novel peptide derived from S2 protein was used to develop an enzyme-linked immunosorbent assay (ELISA) for the detection of broadly cross-reactive antibodies against IBV. The peptide-based ELISA (pELISA) showed good specificity and sensitivity in detecting IBV antibodies against different serotypes. A semilogarithmic regression method for determining IBV antibody titers was also established. Antibody titers detected by pELISA and calculated with this equation were statistically similar to those evaluated by indirect fluorescence assay (IFA). Moreover, the comparison analysis showed a 96.07% compatibility between the pELISA and IDEXX ELISA. All these data demonstrate that the pELISA generated here can be as a rapid and reliable serological surveillance tool for monitoring IBV infection or vaccination.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Pollos , Anticuerpos Antivirales/análisis , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Péptidos , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/prevención & control
6.
Infect Genet Evol ; 112: 105463, 2023 08.
Artículo en Inglés | MEDLINE | ID: covidwho-20244841

RESUMEN

Recent reports on identification of canine coronavirus (CCoV) in humans have emphasized the urgency to strengthen surveillance of animal CoVs. The fact that recombinations between CCoV with feline, porcine CoVs brought about new types of CoVs indicated that more attention should be paid to domestic animals like dogs, cats and pigs, and the CoVs they carried. However, there are about ten kinds of CoVs that infect above animals, and thus representative CoVs with zoonotic potentials were considered in this study. Multiplex RT-PCR against CCoV, Feline coronavirus (FCoV), porcine deltacoronavirus and porcine acute diarrhea syndrome coronavirus was developed to investigate the prevalence of CoVs from domestic dogs in Chengdu, Southwest China. Samples from a total of 117 dogs were collected from a veterinary hospital, and only CCoV (34.2%, 40/117) was detected. Therefore, this study focused on CCoV and its characteristics of S, E, M, N and ORF3abc genes. Compared with CoVs that are capable of infecting humans, CCoV strains showed highest nucleotide identity with the novel canine-feline recombinant detected from humans (CCoV-Hupn-2018). Phylogenetic analysis based on S gene, CCoV strains were not only clustered with CCoV-II strains, but also closely related to FCoV-II strains ZJU1617 and SMU-CD59/2018. As for assembled ORF3abc, E, M, N sequences, CCoV strains had the closest relationship with CCoV-II (B203_GZ_2019, B135_JS_2018 and JS2103). What's more, specific amino acid variations were found, especially in S and N proteins, and some mutations were consistent with FCoV, TGEV strains. Altogether, this study provided a novel insight into the identification, diversification and evolution of CoVs from domestic dogs. It is of top priority to recognize zoonotic potential of CoVs, and continued comprehensive surveillance will help better understand the emergence, spreading, and ecology of animal CoVs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Canino , Enfermedades de los Perros , Animales , Perros , Gatos , Humanos , Porcinos , Coronavirus Canino/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Filogenia , Epidemiología Molecular , Mutación , Animales Domésticos , China/epidemiología , Enfermedades de los Perros/epidemiología
7.
Viruses ; 15(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: covidwho-20243940

RESUMEN

IBV variants belonging to the GI-23 lineage have circulated since 1998 in the Middle East and have spread to several countries over time. In Brazil, the first report of GI-23 occurred in 2022. The study aimed to evaluate the in vivo pathogenicity of exotic variant GI-23 isolates. Biological samples were screening by real-time RT-PCR and classified in to GI-1 or G1-11 lineages. Interestingly, 47.77% were not classified in these lineages. Nine of the unclassified strains were sequenced and showed a high similarity to the GI-23 strain. All nine were isolated and three, were studied for pathogenicity. At necropsy, the main observations were the presence of mucus in the trachea and congestion in the tracheal mucosa. In addition, lesions on the tracheas showed marked ciliostasis, and the ciliary activity confirmed the high pathogenicity of isolates. This variant is highly pathogenic to the upper respiratory tract and can cause severe kidney lesions. This study confirm a circulation of GI-23 strain in the country and report, to first time, the isolation of an exotic variant of IBV in Brazil.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Brasil , Pollos , Virulencia , Infecciones por Coronavirus/veterinaria , Filogenia
8.
Viruses ; 15(5)2023 04 29.
Artículo en Inglés | MEDLINE | ID: covidwho-20238821

RESUMEN

Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets worldwide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are promising vaccine candidates because of their safety and strong immunogenicity. To the best of our knowledge, the present study reported for the first time the generation of PDCoV VLPs using a baculovirus expression vector system, and electron micrograph analyses revealed that PDCoV VLPs appeared as spherical particles with a diameter similar to that of the native virions. Furthermore, PDCoV VLPs effectively induced mice to produce PDCoV-specific IgG and neutralizing antibodies. In addition, VLPs could stimulate mouse splenocytes to produce high levels of cytokines IL-4 and IFN-γ. Moreover, the combination of PDCoV VLPs and Freund's adjuvant could improve the level of the immune response. Together, these data showed that PDCoV VLPs could effectively elicit humoral and cellular immunity in mice, laying a solid foundation for developing VLP-based vaccines to prevent PDCoV infections.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Animales , Ratones , Porcinos , Baculoviridae/genética , Anticuerpos Neutralizantes , Coronavirus/genética , Inmunidad , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria
9.
Arch Virol ; 168(6): 166, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: covidwho-20238472

RESUMEN

Clostridium perfringens is a constituent of the normal gut microbiome in pigs; however, it can potentially cause pre- and post-weaning diarrhea. Nevertheless, the importance of this bacterium as a primary pathogen of diarrhea in piglets needs to be better understood, and the epidemiology of C. perfringens in Korean pig populations is unknown. To study the prevalence and typing of C. perfringens, 203 fecal samples were collected from diarrheal piglets on 61 swine farms during 2021-2022 and examined for the presence of C. perfringens and enteric viruses, including porcine epidemic diarrhea virus (PEDV). We determined that the most frequently identified type of C. perfringens was C. perfringens type A (CPA; 64/203, 31.5%). Among the CPA infections, single infections with CPA (30/64, 46.9%) and coinfections with CPA and PEDV (29/64, 45.3%) were the most common in diarrheal samples. Furthermore, we conducted animal experiments to investigate the clinical outcome of single infections and coinfections with highly pathogenic (HP)-PEDV and CPA in weaned piglets. The pigs infected with HP-PEDV or CPA alone showed mild or no diarrhea, and none of them died. However, animals that were co-inoculated with HP-PEDV and CPA showed more-severe diarrheal signs than those of the singly infected pigs. Additionally, CPA promoted PEDV replication in coinfected piglets, with high viral titers in the feces. A histopathological examination revealed more-severe villous atrophy in the small intestine of coinfected pigs than in singly infected pigs. This indicates a synergistic effect of PEDV and CPA coinfection on clinical disease in weaned piglets.


Asunto(s)
Coinfección , Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Porcinos , Animales , Clostridium perfringens , Coinfección/epidemiología , Coinfección/veterinaria , Destete , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/patología , Diarrea/epidemiología , Diarrea/veterinaria , Diarrea/patología , Enfermedades de los Porcinos/epidemiología , Gravedad del Paciente
10.
Vopr Virusol ; 67(6): 465-474, 2023 02 07.
Artículo en Ruso | MEDLINE | ID: covidwho-20236063

RESUMEN

INTRODUCTION: Bovine coronaviruses (BCoVs) are causative agents of diarrhea, respiratory diseases in calves and winter cow dysentery. The study of genetic diversity of these viruses is topical issue. The purpose of the research is studying the genetic diversity of BCoV isolates circulating among dairy cattle in Siberia. MATERIALS AND METHODS: Specimens used in this study were collected from animals that died or was forcedly slaughtered before the start of the study. The target for amplification were nucleotide sequences of S and N gene regions. RESULTS: Based on the results of RT-PCR testing, virus genome was present in 16.3% of samples from calves with diarrheal syndrome and in 9.9% with respiratory syndrome. The nucleotide sequences of S gene region were determined for 18 isolates, and N gene sequences - for 12 isolates. Based on S gene, isolates were divided into two clades each containing two subclades. First subclade of first clade (European line) included 11 isolates. Second one included classic strains Quebec and Mebus, strains from Europe, USA and Korea, but none of sequences from this study belonged to this subclade. 6 isolates belonged to first subclade of second clade (American-Asian line). Second subclade (mixed line) included one isolate. N gene sequences formed two clades, one of them included two subclades. First subclade included 3 isolates (American-Asian line), and second subclade (mixed) included one isolate. Second clade (mixed) included 8 sequences. No differences in phylogenetic grouping between intestinal and respiratory isolates, as well as according to their geographic origin were identified. CONCLUSION: The studied population of BCoV isolates is heterogeneous. Nucleotide sequence analysis is a useful tool for studying molecular epidemiology of BCoV. It can be beneficial for choice of vaccines to be used in a particular geographic region.


Asunto(s)
Betacoronavirus 1 , Enfermedades de los Bovinos , Infecciones por Coronavirus , Coronavirus Bovino , Coronavirus , Femenino , Bovinos , Animales , Coronavirus Bovino/genética , Coronavirus/genética , Filogenia , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Diarrea/epidemiología , Diarrea/veterinaria , Variación Genética , Enfermedades de los Bovinos/epidemiología
11.
Microb Pathog ; 181: 106185, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-20231019

RESUMEN

Porcine Epidemic Diarrhoea (PED) is an acute, extremely infectious intestinal disease of pigs caused by the Porcine Epidemic Diarrhoea Virus (PEDV). The virus can affect pigs of all breeds and age groups and shows varying degrees of symptoms, with piglets, in particular, being infected with mortality rates of up to 100%. PEDV was first identified in China in the 1980s and in October 2010 a large-scale PED outbreak caused by a variant of PEDV occurred in China, resulting in huge economic losses. Initially, vaccination can effectively prevent the classical strain, but since December 2010, the PEDV variant has caused "persistent diarrhoea" with severe vomiting, watery diarrhoea, and high morbidity and mortality in newborn piglets as the dominant clinical features, with a significant increase in morbidity and mortality. This indicates that PEDV strains have mutated during evolution and that traditional vaccines no longer provide effective cross-immune protection, so it is necessary to optimize immunization programs and find effective treatments through epidemiological surveys of PEDV to reduce the economic losses caused by infections with mutated strains. This article reviews the progress of research on the aetiology, epidemiological characteristics, genotyping, pathogenesis, transmission routes, and comprehensive control of PEDV infection in China.


Asunto(s)
Infecciones por Coronavirus , Disentería , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Genotipo , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Diarrea , China/epidemiología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/prevención & control
12.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2324925

RESUMEN

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Camelus , Linfocitos T , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Anticuerpos Antivirales , Virus Vaccinia , Vacunación
13.
Emerg Microbes Infect ; 12(1): 2207688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2320534

RESUMEN

ABSTRACTPorcine deltacoronavirus (PDCoV) is an emerging enteric coronavirus that has been reported to infect a variety of animals and even humans. Cell-cell fusion has been identified as an alternative pathway for the cell-to-cell transmission of certain viruses, but the ability of PDCoV to exploit this transmission model, and the relevant mechanisms, have not been fully elucidated. Herein, we provide evidence that cell-to-cell transmission is the main mechanism supporting PDCoV spread in cell culture and that this efficient spread model is mediated by spike glycoprotein-driven cell-cell fusion. We found that PDCoV efficiently spread to non-susceptible cells via cell-to-cell transmission, and demonstrated that functional receptor porcine aminopeptidase N and cathepsins in endosomes are involved in the cell-to-cell transmission of PDCoV. Most importantly, compared with non-cell-to-cell infection, the cell-to-cell transmission of PDCoV was resistant to neutralizing antibodies and immune sera that potently neutralized free viruses. Taken together, our study revealed key characteristics of the cell-to-cell transmission of PDCoV and provided new insights into the mechanism of PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Deltacoronavirus , Coronavirus/fisiología , Anticuerpos Neutralizantes , Infecciones por Coronavirus/veterinaria
14.
Arch Virol ; 168(5): 152, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2317672

RESUMEN

Porcine epidemic diarrhea (PED) virus (PEDV) is a highly contagious virus. PED was first identified in 2008 and has greatly affected the Vietnamese pig production economy. The aim of this study was to investigate the epidemiological and genetic characteristics of PEDV in piglet herds in the Mekong Delta, Vietnam. Diarrheal stool and intestinal samples from 2262 piglets from 191 herds in five provinces were collected to test for the presence of PEDV. Ten PEDV strains were randomly selected for sequencing, and four genes encoding PEDV structural proteins were analyzed. The rates of herds and samples positive for PEDV were 27.23% and 27.72%, respectively. In positive herds, the morbidity and mortality of PEDV-positive piglets were 97.97% and 79.06%, respectively, with most of the infected piglets under 7 days of age. Phylogenetic analysis showed that the 10 PEDV strains from this study clustered with genotype G2 strains from Vietnam and neighboring countries. Many amino acid substitutions were identified in important antigenic regions in the spike protein of the 10 strains when compared to four PEDV vaccine strains. This study provides novel insights into the epidemiology and genetic diversity of circulating PEDV strains, which could facilitate the development of an appropriate and proactive strategy for controlling PED.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Filogenia , Vietnam/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Epidemiología Molecular , Diarrea/epidemiología , Diarrea/veterinaria , Enfermedades de los Porcinos/epidemiología
15.
Poult Sci ; 102(5): 102612, 2023 May.
Artículo en Inglés | MEDLINE | ID: covidwho-2317557

RESUMEN

Infectious bronchitis, an acute and highly contagious disease that affects chickens, is caused by the infectious bronchitis virus (IBV). The antigenic variant QX-like IBV was first reported in China in 1996 and is now endemic in many countries. Our previous study reported the first detection and isolation of QX-like IBVs in Japan and that they were genetically related to the recently detected strains in China and South Korea. The pathogenicity of 2 Japanese QX-like IBV strains (JP/ZK-B7/2020 and JP/ZK-B22/2020) was evaluated by inoculating specific pathogen-free (SPF) chickens with 102 to 106 median embryo infectious dose. Both strains caused clinical signs of respiratory symptoms, gross tracheal lesions, and moderate-to-severe suppression of tracheal ciliostasis. To evaluate the efficacy of commercial IBV live vaccines against the JP/ZK-B7/2020 strain, vaccinated SPF chickens were challenged with the JP/ZK-B7/2020 strain at 104 EID50 (median embryo infectious dose). Only the JP-Ⅲ vaccine provided high levels of protection (reduced suppression of tracheal ciliostasis and reduced viral loads in organs), whereas the Mass vaccine showed little protective effect. Virus neutralization test results and comparisons between IBV genotypes based on the S1 gene suggested that QX-like and JP-III genotypes were closely related. These results suggest that the JP-III IBV vaccine, which has relatively high S1 gene homology with QX-like IBVs, is effective against Japanese QX-like IBV strain.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Japón , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Vacunas Atenuadas
16.
Virology ; 584: 9-23, 2023 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2317224

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is a porcine enteropathogenic coronavirus causing severe watery diarrhea, vomiting, dehydration, and death in piglets. However, most commercial vaccines are developed based on the GI genotype strains, and have poor immune protection against the currently dominant GII genotype strains. Therefore, four novel replication-deficient human adenovirus 5-vectored vaccines expressing codon-optimized forms of the GIIa and GIIb strain spike and S1 glycoproteins were constructed, and their immunogenicity was evaluated in mice by intramuscular (IM) injection. All the recombinant adenoviruses generated robust immune responses, and the immunogenicity of recombinant adenoviruses against the GIIa strain was stronger than that of recombinant adenoviruses against the GIIb strain. Moreover, Ad-XT-tPA-Sopt-vaccinated mice elicited optimal immune effects. In contrast, mice immunized with Ad-XT-tPA-Sopt by oral gavage did not induce strong immune responses. Overall, IM administration of Ad-XT-tPA-Sopt is a promising strategy against PEDV, and this study provides useful information for developing viral vector-based vaccines.


Asunto(s)
Adenovirus Humanos , Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Ratones , Humanos , Anticuerpos Antivirales , Virus de la Diarrea Epidémica Porcina/genética , Vacunas Sintéticas/genética , Vacunas Virales/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Genotipo , Glicoproteína de la Espiga del Coronavirus/genética
17.
Arch Virol ; 168(6): 161, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2316516

RESUMEN

Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs in Hunan province of China and has also been identified in pigs infected with porcine epidemic diarrhea virus (PEDV). To further investigate the coinfection and genetic diversity of these two viruses, 65 clinical samples (including feces and intestinal tissues) were collected from diseased piglets on 19 large-scale pig farms in Henan province of China, and a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (qPCR) assay was developed for detecting PEDV and PCV4 simultaneously. The results showed that the limit of detection was 55.2 copies/µL and 44.1 copies/µL for PEDV and PCV4, respectively. The detection rate for PEDV and PCV4 was 40% (26/65) and 38% (25/65), respectively, and the coinfection rate for the two viruses was 34% (22/65). Subsequently, the full-length spike (S) gene of eight PEDV strains and a portion of the genome containing the capsid (Cap) gene of three PCV4 strains were sequenced and analyzed. Phylogenetic analysis showed that all of the PEDV strains from the present study clustered in the G2a subgroup and were closely related to most of the PEDV reference strains from China from 2011 to 2021, but they differed genetically from a vaccine strain (CV777), a Korean strain (virulent DR1), and two Chinese strains (SD-M and LZC). It is noteworthy that two PEDV strains (HEXX-24 and HNXX-24XIA) were identified in one sample, and the HNXX-24XIA strain had a large deletion at amino acids 31-229 of the S protein. Moreover, a recombination event was observed in strain HEXX-24. Phylogenetic analysis based on the amino acid sequence of the PCV4 Cap protein revealed that PCV4 strains were divided into three genotypes: PCV4a1, PCV4a2, and PCV4b. Three strains in the present study belonged to PCV4a1, and they had a high degree of sequence similarity (>98% identity) to other PCV4 reference strains. This study not only provides technical support for field investigation of PEDV and PCV4 coinfection but also provides data for their prevention and control.


Asunto(s)
Circovirus , Coinfección , Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Filogenia , Circovirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/prevención & control , China/epidemiología
18.
Res Vet Sci ; 159: 146-159, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2311847

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an entero-pathogenic coronavirus, which belongs to the genus Alphacoronavirus in the family Coronaviridae, causing lethal watery diarrhea in piglets. Previous studies have shown that PEDV has developed an antagonistic mechanism by which it evades the antiviral activities of interferon (IFN), such as the sole accessory protein open reading frame 3 (ORF3) being found to inhibit IFN-ß promoter activities, but how this mechanism used by PEDV ORF3 inhibits activation of the type I signaling pathway remains not fully understood. Thus, in this present study, we showed that PEDV ORF3 inhibited both polyinosine-polycytidylic acid (poly(I:C))- and IFNα2b-stimulated transcription of IFN-ß and interferon-stimulated genes (ISGs) mRNAs. The expression levels of antiviral proteins in the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated pathway was down-regulated in cells with over-expression of PEDV ORF3 protein, but global protein translation remained unchanged and the association of ORF3 with RLRs-related antiviral proteins was not detected, implying that ORF3 only specifically suppressed the expression of these signaling molecules. At the same time, we also found that the PEDV ORF3 protein inhibited interferon regulatory factor 3 (IRF3) phosphorylation and poly(I:C)-induced nuclear translocation of IRF3, which further supported the evidence that type I IFN production was abrogated by PEDV ORF3 through interfering with RLRs signaling. Furthermore, PEDV ORF3 counteracted transcription of IFN-ß and ISGs mRNAs, which were triggered by over-expression of signal proteins in the RLRs-mediated pathway. However, to our surprise, PEDV ORF3 initially induced, but subsequently reduced the transcription of IFN-ß and ISGs mRNAs to normal levels. Additionally, mRNA transcriptional levels of signaling molecules located at IFN-ß upstream were not inhibited, but elevated by PEDV ORF3 protein. Collectively, these results demonstrate that inhibition of type I interferon signaling by PEDV ORF3 can be realized through down-regulating the expression of signal molecules in the RLRs-mediated pathway, but not via inhibiting their mRNAs transcription. This study points to a new mechanism evolved by PEDV through blockage of the RLRs-mediated pathway by ORF3 protein to circumvent the host's antiviral immunity.


Asunto(s)
Infecciones por Coronavirus , Interferón Tipo I , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Sistemas de Lectura Abierta , Transducción de Señal , Antivirales , Infecciones por Coronavirus/veterinaria , Interferón Tipo I/metabolismo
19.
Viruses ; 15(4)2023 04 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2300977

RESUMEN

Various coronaviruses have emerged as a result of cross-species transmission among humans and domestic animals. Porcine epidemic diarrhea virus (PEDV; family Coronaviridae, genus Alphacoronavirus) causes acute diarrhea, vomiting, dehydration, and high mortality in neonatal piglets. Porcine small intestinal epithelial cells (IPEC-J2 cells) can be used as target cells for PEDV infection. However, the origin of PEDV in pigs, the host range, and cross-species infection of PEDV remain unclear. To determine whether PEDV has the ability to infect human cells in vitro, human small intestinal epithelial cells (FHs 74 Int cells) were inoculated with PEDV LJX and PEDV CV777 strains. The results indicated that PEDV LJX, but not PEDV CV777, could infect FHs 74 Int cells. Furthermore, we observed M gene mRNA transcripts and N protein expression in infected FHs 74 Int cells. A one-step growth curve showed that the highest viral titer of PEDV occurred at 12 h post infection. Viral particles in vacuoles were observed in FHs 74 Int cells at 24 h post infection. The results proved that human small intestinal epithelial cells are susceptible to PEDV infection, suggesting the possibility of cross-species transmission of PEDV.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Línea Celular , Virus de la Diarrea Epidémica Porcina/genética , Intestinos , Células Epiteliales , Infecciones por Coronavirus/veterinaria , Diarrea
20.
Virology ; 582: 114-127, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2298993

RESUMEN

Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.


Asunto(s)
Infecciones por Coronavirus , Gammacoronavirus , Virus de la Bronquitis Infecciosa , Animales , Humanos , Antivirales/farmacología , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Citocinas/genética , Exorribonucleasas , Virus de la Bronquitis Infecciosa/genética , Porcinos , Proteína p53 Supresora de Tumor , Ubiquitinas , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA